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Chapter one  

Coordinate systems 
 

1- General curvilinear coordinates 

In the general case, the position of a point P having Cartesian coordinates x,y,z may be expressed 

in terms of the three curvilinear coordinates u1,u2,u3, where: 

𝑥 = 𝑥(𝑢1, 𝑢2, 𝑢3), 𝑦 = 𝑦(𝑢1, 𝑢2, 𝑢3), 𝑧 = 𝑧(𝑢1, 𝑢2, 𝑢3) 

and similarly  

𝑢1 = 𝑢1 (x,y,z), 𝑢2 =𝑢2 (x,y,z), 𝑢3 =𝑢3 (x,y,z). 

The u1, u2 and u3 coordinate curves of a general curvilinear system are analogous to the x, y and 

z axes of Cartesian coordinates. The surfaces u1 = c1, u2= c2 and u3 = c3, where c1, c2, c3 are 

constants, are called the coordinate surfaces and each pair of these surfaces has its intersection in 

a curve called a coordinate curve or line (see figure 1). 

 

Figure (1): General curvilinear coordinates. 

If at each point in space the three coordinate surfaces passing through the point meet at right 

angles then the curvilinear coordinate system is called orthogonal. For example, in spherical 

polars u1 = r, u2 = θ, u3 = φ and the three coordinate surfaces passing through the point (R,Θ,Φ) 

are the sphere r = R, the circular cone θ = Θ and the plane φ = Φ, which intersect at right angles 

at that point. Therefore spherical polars form an orthogonal coordinate system (as do cylindrical 

polars). 

If r(𝑢1, 𝑢2, 𝑢3) is the position vector of the point P then e1 = ∂r/∂u1 is a vector tangent to the u1 

curve at P (for which u2 and u3 are constants) in the direction of increasing u1. Similarly, e2 = 
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∂r/∂u2 and e3 = ∂r/∂u3 are vectors tangent to the u2 and u3 curves at P in the direction of increasing 

u2 and u3 respectively. Denoting the lengths of these vectors by h1, h2 and h3, the unit vectors in 

each of these directions are given by: 

 

𝑒̂1 =  
1

ℎ1
  

𝜕𝒓

𝜕𝑢1
  , 𝑒̂2  =

1

ℎ2
  

𝜕𝒓

𝜕𝑢2
, 𝑒̂3  =  

1

ℎ3
 

𝜕𝒓

𝜕𝑢3
, 

 where  

ℎ1  =  |
𝜕𝒓

𝜕𝑢1
| , ℎ2  =  |

𝜕𝒓

𝜕𝑢2
|    𝑎𝑛𝑑  ℎ3  =  |

𝜕𝒓

𝜕𝑢3
| 

The quantities h1, h2, h3 are the scale factors of the curvilinear coordinate system. The element of 

distance associated with an infinitesimal change dui in one of the coordinates is hi dui. In the 

previous section we found that the scale factors for cylindrical and spherical polar coordinates 

were: 

𝑓𝑜𝑟 cartesian coordinates    ℎ 𝑥 = 1, ℎ𝑦  =  1, ℎ𝑧  = 1, 

𝑓𝑜𝑟 𝑐𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙 𝑝𝑜𝑙𝑎𝑟𝑠          ℎ 𝜌 = 1, ℎ𝜑  =  𝜌, ℎ𝑧  = 1, 

 𝑓𝑜𝑟 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑝𝑜𝑙𝑎𝑟𝑠    ℎ𝑟  = 1, ℎ 𝜃 = 𝑟, ℎ𝜑  = 𝑟 𝑠𝑖𝑛𝜃. 

 

An infinitesimal vector displacement in general curvilinear coordinates is given by: 

𝑑𝒓 =
𝜕𝒓

𝜕𝑢1
  𝑑𝑢1 +

𝜕𝒓

𝜕𝑢2
  𝑑𝑢2 +

𝜕𝒓

𝜕𝑢3
  𝑑𝑢3 … … … … … (1) 

𝑑𝒓 = 𝑑𝑢1 𝒆1  + 𝑑𝑢2 𝒆2  + 𝑑𝑢3 𝒆3 … … … … … (2) 

 

𝑑𝒓 = ℎ1𝑑𝑢1 𝑒̂1  + ℎ2 𝑑𝑢2 𝑒̂2  + ℎ3 𝑑𝑢3 𝑒̂3 … … … … … (3) 

The element of arc length is given by: 

(𝑑𝑠)2  =  𝑑𝒓 ·  𝑑𝒓 = ℎ1
2 (𝑑𝑢1)2  +  ℎ2

2 (𝑑𝑢2)2  + ℎ3
2(𝑑𝑢3)2 

The volume element for the coordinate system is: 

𝑑𝑉 = |𝑑𝑢1 𝑒̂1  · (𝑑𝑢2 𝑒̂2  ×  𝑑𝑢3 𝑒̂3)| 

= |ℎ1𝑒̂1  ·  (ℎ2 𝑒̂2  × ℎ3 𝑒̂3)|𝑑𝑢1 𝑑𝑢2 𝑑𝑢3 

= ℎ1ℎ2ℎ3𝑑𝑢1 𝑑𝑢2 𝑑𝑢3. 
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Table (1): Vector operators in orthogonal curvilinear coordinates u1,u2,u3. Φ is a scalar field and 

a is a vector field. 

 

2- Gradient. Divergence, Curl and Laplacian in Cartesian Coordinate:  

Certain differential operations may be performed on scalar and vector fields and have 

wideranging applications in the physical sciences. The most important operations are those of 

finding the gradient of a scalar field and the divergence and curl of a vector field. 

 Central to all these differential operations is the vector operator ∇, which is called del (or 

sometimes nabla) and in Cartesian coordinates is defined 𝑏𝑦: 

𝜵 ≡  𝒊 
𝜕

𝜕𝑥
  +  𝒋 

𝜕

𝜕𝑦
  +  𝒌 

𝜕

𝜕𝑧
  … … … … … (4) 

The gradient of a scalar field φ(x,y,z) is defined by:  

𝑔𝑟𝑎𝑑 𝜑 =  𝜵𝜑 =  𝒊 
𝜕𝜑

 𝜕𝑥 
+  𝒋 

𝜕𝜑

𝜕𝑦
  +  𝒌 

𝜕𝜑

𝜕𝑧
  … … … … . . . (5) 

Clearly, ∇φ is a vector field whose x, y and z components are the first partial derivatives of 

φ(x,y,z) with respect to x, y and z respectively. Also note that the vector field ∇φ should not 

be confused with the vector operator φ∇, which has components (φ∂/∂x,φ∂/∂y,φ∂/∂z). 

ة، فعند دراسة تدرج المجال المغناطيسي فأننا نقيس معدل وجهة تغير لاثالث للأبعادالتدرج هو التغير المكاني بالنسبة  

  الثلاثة. الابعاد خلالالمجال المغناطيسي في الفراغ وانتقاله من 
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Figure (2): Geometrical properties of ∇φ. PQ gives the value of 𝑑𝜑 𝑑𝑠 in the direction a 

 

 ▶Find the gradient of the scalar field φ = xy2z3 

∇φ =y2z3i+2xyz3j+3xy2z2k. ◀ 

 

The divergence of a vector field a(x,y,z) is defined by: 

𝑑𝑖𝑣 𝒂 =  𝛻 · 𝒂 =
 𝜕𝑎𝑥

𝜕𝑥
+  

𝜕𝑎𝑦

𝜕𝑦
+  

𝜕𝑎𝑧

𝜕𝑧
… … … … … (6) 

Where ax, ay and az are the x, y and z components of a. Clearly, ∇·a  is a scalar field. Any vector 

field a for which ∇· a = 0 is said to be solenoidal. )ملف لولبي( 

د دراسة ق هي منبعا للمجال. عنيك على ان النقطة التي حسب فيها التفرق هو معدل تباعد المجال عن نقطة معينة، ويدل ذليالتفر

 نقيس معدل انتشار او تباعد المجال عند النقطة المفروضة للمجال. فأنناق المجال المغناطيسي يتفر

 

▶Find the divergence of the vector field a = x2y2i + y2z2j + x2z2k. 

∇·a =2xy2 +2yz2 +2x2z =2(xy2 +yz2 +x2z). ◀ 

 

Now if some vector field a is itself derived from a scalar field via a = ∇φ then ∇·a has the form 

∇·∇φ or, as it is usually written, ∇2φ, where ∇2 (del squared) is the scalar differential operator: 

𝛻2  ≡
𝜕2

𝜕𝑥2 
+  

𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2 … … … … . . . (7) 
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∇2φ is called the Laplacian of φ and appears in several important partial differential equations of 

mathematical physics. 

 

▶Find the Laplacian of the scalar field φ = xy2z3. 

𝛻2𝜑 =  
𝜕2𝜑

𝜕𝑥2 
+  

𝜕2𝜑

𝜕𝑦2
+

𝜕2𝜑

𝜕𝑧2
 = 2𝑥𝑧3  + 6𝑥𝑦2𝑧 ◀ 

 

The curl of a vector field a(x,y,z) is defined by: 

curl 𝐚 =  ∇ × 𝐚 =  (
𝜕𝑎𝑧 

𝜕𝑦
−

𝜕𝑎𝑦

𝜕𝑧
)  𝒊 +  (

𝜕𝑎𝑥

𝜕𝑧
 −

𝜕𝑎𝑧

𝜕𝑥
)  𝒋 +  (

𝜕𝑎𝑦

𝜕𝑥
 −

𝜕𝑎𝑥

𝜕𝑦
)  𝒌 … … … … … (8) 

where ax, ay and az are the x, y and z components of a. The RHS can be written in a more 

memorable form as a determinant: 

 𝛻 × 𝒂 =  ||

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
a𝑥 a𝑦 a𝑧

|| … … … … … (9) 

 

Where it is understood that, on expanding the determinant, the partial derivatives in the second 

row act on the components of a in the third row. Clearly, ∇×a  is itself a vector field. Any vector 

field a for which ∇×a=0 is said to be irrotational. )غير دوراني( 

المجال المغناطيسي فأننا نقيس معدل دوران المجال  هو مدى دوران المجال عند أي نقطة، فعند دراسة دوران تدويران ال

المغناطيسي حول النقطة المفروضة. مثلا على ذلك خطوط المجل المغناطيسي للكرة الأرضية تخرج من القطب الجنوبي 

 حول الأرض فالنتيجة صفر.ق المجال المغناطيسي يد دراسة تفر)المصدر( وتتجه الى القطب الشمالي )المصرف(. وعن

 

▶Find the curl of the vector field a=x2y2z2 i + y2z2 j + x2z2 k. 

∇×a= |

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

x2y2z2 y2z2 x2z2

| =−2 y2z i -2 (xz2−x2y2z) j -2 x2yz2 k .◀ 
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Table (2): Vector operators acting on sums and products. The operator ∇ is defined in eq.(4); φ 

and ψ are scalar fields, a and b are vector fields. 

 

2-2 Combinations of grad, div and curl: 

If φ is a scalar field and a is a vector field, these four combinations are grad(grad φ), 

div(div a), curl(div a) and grad(curl a). Of the five valid combinations of grad, div and curl, two 

are identically zero, namely 

𝑐𝑢𝑟𝑙 𝑔𝑟𝑎𝑑 𝜑 =  𝛻 × 𝛻𝜑 = 0 … … … … … (10) 

 𝑑𝑖𝑣 𝑐𝑢𝑟𝑙 𝒂 =  𝛻 · (𝛻 × 𝒂) = 0 … … … … … (11) 

We see that if a is derived from the gradient of some scalar function such that a = ∇φ then it is 

necessarily irrotational (∇×a = 0). We also note that if a is an irrotational vector field then another 

irrotational vector field is a +∇φ+c, where φ is any scalar field and c is a constant vector. This 

follows since: 

𝛻 × (𝑎 + 𝛻𝜑 + 𝑐) = 𝛻 × 𝑎 + 𝛻 × 𝛻𝜑 = 0 … … … … … (12) 

Similarly, from (8) we may infer that if b is the curl of some vector field a such that b = ∇×a then 

b is solenoidal (∇·b = 0). Obviously, if b is solenoidal and c is any constant vector then b + c is 

also solenoidal. 

 

∇(φ+ψ)=∇φ+∇ψ 

∇·(a+b)=∇·a+∇·b 

∇×(a+b)=∇×a+∇×b 

∇(φψ)=φ∇ψ+ψ∇φ 

∇(a · b)=a×(∇×b)+b×(∇×a)+(a·∇)b+(b·∇)a 

∇·(φa)=φ∇·a+a·∇φ 

∇·(a×b)=b·(∇×a)−a·(∇×b) 

∇×(φa)=∇φ×a+φ∇×a 

∇×(a×b)=a(∇·b)−b(∇·a)+(b·∇)a−(a·∇)b 
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The three remaining combinations of grad, div and curl are: 

𝑑𝑖𝑣 𝑔𝑟𝑎𝑑 𝜑 =  𝛻 · 𝛻𝜑 = 𝛻2𝜑 =  
𝜕2𝜑

𝜕𝑥2 
+  

𝜕2𝜑

𝜕𝑦2 +
𝜕2𝜑

𝜕𝑧2 … … … … … (13) 

 

𝐺𝑟𝑎𝑑 𝑑𝑖𝑣 𝑎 =  𝛻(𝛻 · 𝑎)

= (
 𝜕2𝑎𝑥

𝜕𝑥2 +  
𝜕2𝑎𝑦

𝜕𝑥𝜕𝑦
+  

𝜕2𝑎𝑧

𝜕𝑥𝜕𝑧
) 𝑖 + (

 𝜕2𝑎𝑥

𝜕𝑦𝜕𝑥
+  

𝜕2𝑎𝑦

𝜕𝑦2 +  
𝜕2𝑎𝑧

𝜕𝑦𝜕𝑧
) 𝑗

+ (
 𝜕2𝑎𝑥

𝜕𝑧𝜕𝑥
+  

𝜕2𝑎𝑦

𝜕𝑧𝜕𝑦
+  

𝜕2𝑎𝑧

𝜕𝑧2 ) 𝑘 … … … … … (14) 

 

𝑐𝑢𝑟𝑙 𝑐𝑢𝑟𝑙 𝒂 =  𝛻 × (𝛻 × 𝒂) = 𝛻(𝛻 · 𝒂) − 𝛻2𝒂 … … … … … (15) 

 

The term ∇2a has the linear differential operator ∇2 acting on a vector (as opposed to a scalar as 

in (13)), which of course consists of a sum of unit vectors multiplied by components.  Two cases 

arise. 

 

(i) If the unit vectors are constants (i.e. they are independent of the values of the 

coordinates) then the differential operator gives a non-zero contribution only when 

acting upon the components, the unit vectors being merely multipliers. 

امل التفاضل يعطي مساهمة غير صفرية فقط عند إذا كانت متجهات الوحدة ثابتة )أي أنها مستقلة عن قيم الإحداثيات(، فإن ع

 ، حيث تكون متجهات الوحدة مجرد مضاعفات.المركباتالعمل على 

 

(ii) If the unit vectors vary as the values of the coordinates change (i.e. are not constant in 

direction throughout the whole space) then the derivatives of these vectors appear as 

contributions to ∇2a. 

إذا تغيرت متجهات الوحدة مع تغير قيم الإحداثيات )أي أنها ليست ثابتة في الاتجاه في جميع أنحاء المساحة(، فإن مشتقات هذه 

 ∇a2المتجهات تظهر كمساهمات في 

▶Show that ∇·(∇φ×∇ψ)=0, where φ and ψ are scalar fields. 

From the table(1) we have: 

∇·(a×b)=b·(∇×a)−a·(∇×b).  

If we let a = ∇φ and b = ∇ψ then we obtain  
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∇·(∇φ×∇ψ)=∇ψ·(∇×∇φ)−∇φ·(∇×∇ψ)=0, 

 since ∇×∇φ =0=∇×∇ψ, from (7). ◀ 

3- Cylindrical polar coordinates: 

As shown in figure (2), the position of a point in space P having Cartesian coordinates x,y,z may 

be expressed in terms of cylindrical polar coordinates ρ, φ,z, where: 

𝑥 = 𝜌𝑐𝑜𝑠𝜑, 𝑦 = 𝜌𝑠𝑖𝑛𝜑, 𝑧 = 𝑧 … … … … … (16) 

and 𝜌 ≥ 0, 0 ≤ 𝜑 < 2𝜋, 𝑎𝑛𝑑 − ∞ < 𝑧 < ∞ .The position vector of P may therefore be written 

𝒓 = 𝜌 𝑐𝑜𝑠𝜑 𝒊 + 𝜌 𝑠𝑖𝑛𝜑 𝒋 + 𝑧 𝒌 … … … … … (17) 

If we take the partial derivatives of r with respect to ρ, φ and z respectively then we obtain the 

three vectors: 

𝒆𝝆  =
𝜕𝒓

𝜕𝜌
 = 𝑐𝑜𝑠𝜑 𝒊 + 𝑠𝑖𝑛𝜑 𝒋 … … … … … … (18) 

𝒆𝝋 =
𝜕𝒓

𝜕𝜑
 = −𝜌 𝑠𝑖𝑛𝜑 𝒊 + 𝜌 𝑐𝑜𝑠𝜑 𝒋 … … … … … (19) 

𝒆𝒛  =  
𝜕𝒓

𝜕𝑧
= 𝒌 … … … … … … (20) 

These vectors lie in the directions of increasing ρ, φ and z respectively but are not all of unit 

length. it is usual to work with the corresponding unit vectors, which are obtained by dividing 

each vector by its modulus to give: 

𝑒̂𝜌 =  𝒆𝝆 = 𝑐𝑜𝑠𝜑 𝒊 + 𝑠𝑖𝑛𝜑 𝒋 … … … … … … (21) 

𝑒̂𝜑 =
1

𝜌
𝒆𝝋 = −𝑠𝑖𝑛𝜑 𝒊 + 𝑐𝑜𝑠𝜑 𝒋 … … … … … (22) 

𝑒̂𝑧  =  𝒆𝒛 = 𝒌 … … … … … … (23) 

These three unit vectors, like the Cartesian unit vectors i, j and k, form an orthonormal triad at 

each point in space. 

 The expression for a general infinitesimal vector displacement dr in the position of P is given 

by: 

𝑑𝒓 =
𝜕𝒓

𝜕𝜌
 𝑑𝜌 +  

𝜕𝒓

𝜕𝜑
𝑑𝜑 +

𝜕𝒓

𝜕𝑧
 𝑑𝑧. 

𝑑𝒓 = 𝑑𝜌 𝒆𝝆  + 𝑑𝜑 𝒆𝝋  + 𝑑𝑧 𝒆𝒛 
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𝑑𝒓 = 𝑑𝜌 𝑒̂𝜌 + 𝜌 𝑑𝜑 𝑒̂𝜑  + 𝑑𝑧  𝑒̂𝑧 … … … … … (24) 

This expression illustrates an important difference between Cartesian and cylindrical polar 

coordinates (or non-Cartesian coordinates in general). In Cartesian coordinates, the distance 

moved in going from x to x + dx, with y and z held constant, is simply ds = dx. However, in 

cylindrical polars, if φ changes by dφ, with ρ and z held constant, then the distance moved is not 

dφ, but ds = ρdφ. 

 

figure (3): Cylindrical polar coordinates ρ,φ,z. 

 

Factors, such as the ρ in ρdφ, that multiply the coordinate differentials to give distances are known 

as scale factors. From (24), the scale factors for the ρ, φ and z coordinates are therefore 1, ρ and 

1 respectively. 

The magnitude ds of the displacement dr is given in cylindrical polar coordinates by: 

(𝑑𝑠)2  =  𝑑𝒓 ·  𝑑𝒓 = (𝑑𝜌)2 + 𝜌2(𝑑𝜑)2  + (𝑑𝑧)2 … … … … … (25) 

Where in the second equality we have used the fact that the basis vectors are orthonormal. We 

can also find the volume element in a cylindrical polar system (see figure 4) by calculating the 

volume of the infinitesimal parallelepiped defined by the vectors dρ𝑒̂𝜌, ρdφ𝑒̂𝜑  and dz𝑒̂𝑧: 

𝑑𝑉 = |𝑑𝜌𝑒̂𝜌 ·  (𝜌𝑑𝜑𝑒̂𝜑  ×  𝑑𝑧 𝑒̂𝑧)| =  𝜌𝑑𝜌𝑑𝜑𝑑𝑧 
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Figure (4): The element of volume in cylindrical polar coordinates is given by ρ dρ dφ dz. 

The expressions for grad, div, curl and ∇2 can then be calculated and are given in table (3): 

 

 

Table (3): Vector operators in cylindrical polar coordinates; Φ is a scalar field and a is a vector 

field. 

Let us consider a vector field a(ρ,φ,z) and a scalar field Φ(ρ,φ,z), where we use Φ for the scalar 

field to avoid confusion with the azimuthal angle φ. We must first write the vector field in terms 

of the basis vectors of the cylindrical polar coordinate system, i.e. 

𝒂 = 𝑎𝜌 𝑒̂𝜌 + 𝜌 𝑎𝜑 𝑒̂𝜑  + 𝑎𝑧  𝑒̂𝑧 

where aρ, aφ and az are the components of a in the ρ, φ and z directions respectively. 

 

▶Express the vector field a = yz i –y j+xz2 k in cylindrical polar coordinates, and hence calculate 

its divergence. Show that the same result is obtained by evaluating the divergence in Cartesian 

coordinates. 
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The basis vectors of the cylindrical polar coordinate system are given in (21)–(23). Solving these 

equations simultaneously for i, j and k we obtain: 

 

𝒊 = 𝑐𝑜𝑠𝜑 𝑒̂𝜌 − 𝑠𝑖𝑛𝜑 𝑒̂𝜑 

𝒋 = 𝑠𝑖𝑛𝜑 𝑒̂𝜌 + 𝑐𝑜𝑠𝜑 𝑒̂𝜑 

𝒌 =  𝑒̂𝑧 

 

Substituting these relations and (13) into the expression for a we find: 

 𝒂 = 𝑧𝜌𝑠𝑖𝑛𝜑(𝑐𝑜𝑠𝜑 𝑒̂𝜌  − 𝑠𝑖𝑛𝜑 𝑒̂𝜑) − 𝜌𝑠𝑖𝑛𝜑(𝑠𝑖𝑛𝜑 𝑒̂𝜌 + 𝑐𝑜𝑠𝜑 𝑒̂𝜑) + 𝑧2𝜌 𝑐𝑜𝑠𝜑 𝑒̂𝑧  

= (𝑧 𝜌 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 − 𝜌 𝑠𝑖𝑛2𝜑)𝑒̂𝜌  − (𝑧 𝜌 𝑠𝑖𝑛2 𝜑 + 𝜌 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑)𝑒̂𝜑  

+ 𝑧2𝜌 𝑐𝑜𝑠𝜑 𝑒̂𝑧. 

 

Substituting into the expression for ∇ · a given in table 2: 

𝛻 · 𝒂 = 2𝑧 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 −  2 𝑠𝑖𝑛2𝜑 −  2𝑧 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 −  𝑐𝑜𝑠2𝜑 +   𝑠𝑖𝑛2𝜑 +  2𝑧 𝜌 𝑐𝑜𝑠𝜑 

=  2𝑧 𝜌 𝑐𝑜𝑠𝜑 − 1. 

Alternatively, and much more quickly in this case, we can calculate the divergence directly in 

Cartesian coordinates. We obtain 

𝛻 · 𝒂 =
 𝜕𝑎𝑥

𝜕𝑥
+  

𝜕𝑎𝑦

𝜕𝑦
+  

𝜕𝑎𝑧

𝜕𝑧
= 2 𝑧 𝑥 − 1 

which on substituting x = ρ cosφ yields the same result as the calculation in cylindrical polars. ◀ 

 

4- Spherical polar coordinates: 
 

As shown in figure (4), the position of a point in space P, with Cartesian coordinates x,y,z, may 

be expressed in terms of spherical polar coordinates r, θ, φ,where: 

𝑥 = 𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑, 𝑦 = 𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑, 𝑧 = 𝑟𝑐𝑜𝑠𝜃 … … … … … (26) 

and r ≥ 0, 0 ≤ θ ≤π and 0≤φ <2π. The position vector of ` may therefore be written as: 

𝒓 = 𝑟 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜑 𝒊 + 𝑟 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜑 𝒋 + 𝑟 𝑐𝑜𝑠𝜃 𝒌 … … … … … (27) 
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If, in a similar manner to that used in the previous section for cylindrical polars, we find the partial 

derivatives of r with respect to r, θ and φ respectively and divide each of the resulting vectors by 

its modulus then we obtain the unit basis vectors: 

 𝑒̂𝑟  = 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜑 𝒊 + 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜑 𝒋 + 𝑐𝑜𝑠𝜃 𝒌, 

 𝑒̂𝜃  = 𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜑 𝒊 + 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜑 𝒋 − 𝑠𝑖𝑛𝜃 𝒌, 

 𝑒̂𝜑  =  −𝑠𝑖𝑛𝜑 𝒊 + 𝑐𝑜𝑠𝜑 𝒋. 

These unit vectors are in the directions of increasing r, θ and φ respectively and are the 

orthonormal basis set for spherical polar coordinates, as shown in figure (5). 

 

Figure (5): Spherical polar coordinates r,θ,φ. 

A general infinitesimal vector displacement in spherical polars is: 

𝑑𝒓 =  𝑑𝑟 𝑒̂𝑟  + 𝑟 𝑑𝜃 𝑒̂𝜃  + 𝑟 𝑠𝑖𝑛𝜃 𝑑𝜑  𝑒̂𝜑 … … … … … (28) 

Thus the scale factors for the r, θ and φ coordinates are 1, r and r sinθ respectively. The magnitude 

ds of the displacement dr is given by: 

(𝑑𝑠)2  =  𝑑𝒓 ·  𝑑𝒓 = (𝑑𝑟)2  +  𝑟2 (𝑑𝜃)2  + 𝑟2 𝑠𝑖𝑛2 𝜃(𝑑𝜑)2 

since the basis vectors form an orthonormal set. The element of volume in spherical polar 

coordinates (see figure 6) is the volume of the infinitesimal parallelepiped defined by the vectors 

dr 𝑒̂𝑟, rdθ 𝑒̂𝜃 and r sinθ dφ  𝑒̂𝜑 and is given by: 

𝑑𝑉 = |𝑑𝑟 𝑒̂𝑟  ·  (𝑟 𝑑𝜃 𝑒̂𝜃  ×  𝑟 𝑠𝑖𝑛𝜃 𝑑𝜑 𝑒̂𝜑)| =  𝑟2𝑠𝑖𝑛𝜃 𝑑𝑟 𝑑𝜃 𝑑𝜑 

Where again we use the fact that the basis vectors are orthonormal. The expressions for (ds)2 and 

dV in spherical polars can be obtained from the geometry of this coordinate system. 
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Figure (6): The element of volume in spherical polar coordinates is given by r2sinθ dr dθ dφ. 

We will now express the standard vector operators in spherical polar coordinates, using the same 

techniques as for cylindrical polar coordinates. We consider a scalar field Φ(r,θ,φ) and a vector 

field a(r,θ,φ). The latter may be written in terms of the basis vectors of the spherical polar 

coordinate system as: 

𝒂 = 𝑎𝑟  𝑒̂𝑟  + 𝑎𝜃   𝑒̂𝜃  +  𝑎𝜑  𝑒̂𝜑, 

where ar, aθ and aφ are the components of a in the r, θ and φ directions respectively. The 

expressions for grad, div, curl and ∇2 are given in table (4). The derivations of these results are 

given in the next section. 

 

Table (4): Vector operators in spherical polar coordinates; Φ is a scalar field and a is a vector 

field. 

We can rewrite the first term on the RHS as follows:  

1

𝑟2  
𝜕 

𝜕𝑟
 𝑟2

𝜕𝛷 

𝜕𝑟
 =

1 

𝑟
 

𝜕2

𝜕𝑟2  (𝑟𝛷)  

Which can often be useful in shortening calculations. 

 


