Chapter one

Coordinate systems

1- General curvilinear coordinates

In the general case, the position of a point P having Cartesian coordinates X,y,z may be expressed
in terms of the three curvilinear coordinates uj,u,us, where:

X = X(ul,UZ,U3), y = y(u11u21u3)1 Z = Z(u1'u2'u3)
and similarly
U = Uy (X,y,Z), Uy =Up (X,y,Z), Us :u3 (X,y,Z).

The u1, u2 and us coordinate curves of a general curvilinear system are analogous to the x, y and
z axes of Cartesian coordinates. The surfaces u; = 1, U= Cz and Uz = C3, where ¢i, Cy, C3 are
constants, are called the coordinate surfaces and each pair of these surfaces has its intersection in
a curve called a coordinate curve or line (see figure 1).

. Uy = Cy

X

Figure (1): General curvilinear coordinates.

If at each point in space the three coordinate surfaces passing through the point meet at right
angles then the curvilinear coordinate system is called orthogonal. For example, in spherical
polars us =r, uz = 8, us = ¢ and the three coordinate surfaces passing through the point (R, ®, ®)
are the sphere r = R, the circular cone 8 = @ and the plane ¢ = @, which intersect at right angles
at that point. Therefore spherical polars form an orthogonal coordinate system (as do cylindrical
polars).

If r(uq,, uy, ug) is the position vector of the point P then e; = Or/du; is a vector tangent to the u;

curve at P (for which u; and us are constants) in the direction of increasing ui. Similarly, e; =
1



or/ouy and e = Or/dug are vectors tangent to the u, and usz curves at P in the direction of increasing

Uz and us respectively. Denoting the lengths of these vectors by hj, h, and hs, the unit vectors in
each of these directions are given by:

. 1 or . 1 or . 1 or
T how P Thyow 7T by duy
where
or or or
1 = oul’ h, = E and hz = E

The quantities hs, hy, hs are the scale factors of the curvilinear coordinate system. The element of
distance associated with an infinitesimal change du; in one of the coordinates is h; du;. In the

previous section we found that the scale factors for cylindrical and spherical polar coordinates
were:

for cartesian coordinates h, =1, h, =1, h, =1,
for cylindrical polars h,=1, hy, = p, h, =1,
for spherical polars h, =1, hg=r, h, =1 sind.

An infinitesimal vector displacement in general curvilinear coordinates is given by:

dr =2 duy + 25 gy + 2 g 1
r= aul Uy auz Uz au3 Uz ( )
dr = du1 61 + duZ ez + dU3 e3 (2)
dr = hldul él + hz duz éz + h3 du3 é3 (3)

The element of arc length is given by:

(ds)? = dr - dr = h? (duy)? + h3 (duy)? + h3(dus)?
The volume element for the coordinate system is:

dv = |du1 él . (duz éz X du3 é3)|
= |h1é; - (hy é; X h3 é3)|duy du, dug

= hl h2h3 du1 duz dU3.
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1 0b, 1 00, 1 00,

® = 7 it et
v hy duy © h, du, © h; dus e3
1 [0 0
V-a = — (hahszay) + —(hshiay) + —(hi1haas)
hihahs | duy Oulr Oz
hlél thg h_w,ég
1 0 0 0
Vxa = o | an dwm ou
h,al hgﬂz h3a3
1 [ 0 hghg od 0 113”11 oD 0 ”11!12 L)
2(1} —
v hihhs | duy ( h @ul) + Oty ( h, @ug) + ous ( hy 51,13)}

Table (1): Vector operators in orthogonal curvilinear coordinates uj,up,us. @ is a scalar field and
a is a vector field.

2- Gradient. Divergence, Curl and Laplacian in Cartesian Coordinate:

Certain differential operations may be performed on scalar and vector fields and have
wideranging applications in the physical sciences. The most important operations are those of
finding the gradient of a scalar field and the divergence and curl of a vector field.

Central to all these differential operations is the vector operator V, which is called del (or
sometimes nabla) and in Cartesian coordinates is defined by:

%) 0 d

The gradient of a scalar field ¢(x,y,z) is defined by:

0 0 9]
grad ¢ = Vo = i%+j—(p + k—<p PR ) |
Clearly, Vo is a vector field whose x, y and z components are the first partial derivatives of
o(X,y,z) with respect to x, y and z respectively. Also note that the vector field Vo should not

be confused with the vector operator ¢V, which has components (¢o/0X,@0/0y,p0/0z).
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Figure (2): Geometrical properties of Vo. PQ gives the value of de ds in the direction a

» Find the gradient of the scalar field ¢ = xy?z®
Vo =y?z3i+2xyz3j+3xy?z°k. <

The divergence of a vector field a(x,y,z) is defined by:

di _ 3 aax+ aay+ da, 6
va = a = ox 3y e NPT (3)|

Where ay, ay and a, are the X, y and z components of a. Clearly, V-a is a scalar field. Any vector
field a for which V- a = 0 is said to be solenoidal. (5! <al)
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» Find the divergence of the vector field a = x?y?i + y?z%j + x?zk.

V-a =2xy? +2yz? +2x°z =2(xy? +yz? +x%z). <4

Now if some vector field a is itself derived from a scalar field via a = Vo then V-a has the form
V-V or, as it is usually written, V2, where V2 (del squared) is the scalar differential operator:
ik 92 02

V2 = 57zt oyt a9 e e (7)
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V2¢ is called the Laplacian of ¢ and appears in several important partial differential equations of
mathematical physics.

» Find the Laplacian of the scalar field ¢ = xy?z®.

62<p+ 62<p+62<p

2 —
Ve = dx2 dy?2 = 0z2

= 2xz° + 6xy%z 4

The curl of a vector field a(x,y,z) is defined by:

da, OJda, da, da, da, day
1 = = _—— [ -_— j - — — sss mEs mEs mEE mms
curla =V xa <0y az>l+(az ax)]+ dx ay k ®)

where ay, ay and a, are the x, y and z components of a. The RHS can be written in a more
memorable form as a determinant:

i J ki
o d 0

Vxa=|— — —|.iiin (9
dx Jy 0z

Where it is understood that, on expanding the determinant, the partial derivatives in the second
row act on the components of a in the third row. Clearly, Vxa is itself a vector field. Any vector
field a for which Vxa=0 is said to be irrotational. (s e)
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» Find the curl of the vector field a=x?y?z?i + y?z?j + x?z%k.

i j k
2 2 2 _ :
Vxa=| o~ 3 0, | =72Y%2i-2 (x2—x%y%z) j -2 x*yz° k . 4
XZYZZZ yZZZ XZZZ



V(p+y)=Vo+Vy
V-(atb)=V-a+V-b
Vx(a+b)=Vxa+Vxb
V(oy)=oVy+yVe
V(a - b)=ax(Vxb)+bx(Vxa)+(a-V)b+(b-V)a
V-(pa)=¢V-ata-Vo
V.(axb)=b-(Vxa)—a-(Vxb)
Vx(pa)=Vexa+eVxa
Vx(axb)=a(V-b)-b(V-a)+(b-V)a—(a-V)b

Table (2): Vector operators acting on sums and products. The operator V is defined in eq.(4); ¢
and v are scalar fields, a and b are vector fields.

2-2 Combinations of grad, div and curl:

If ¢ 1s a scalar field and a is a vector field, these four combinations are grad(grad o),
div(div a), curl(div a) and grad(curl a). Of the five valid combinations of grad, div and curl, two
are identically zero, namely

curlgrad o = VXxVep =0..........(10)
divcurla =V-(Vxa)=0...........(11)

We see that if a is derived from the gradient of some scalar function such that a = Vo then it is
necessarily irrotational (Vxa = 0). We also note that if a is an irrotational vector field then another

irrotational vector field is a +Voe+c, where ¢ is any scalar field and c is a constant vector. This
follows since:

Vx(a+Vop+c)=VXa+VxVp=0..........(12)

Similarly, from (8) we may infer that if b is the curl of some vector field a such that b = Vxa then
b is solenoidal (V-b = 0). Obviously, if b is solenoidal and c is any constant vector then b + c is
also solenoidal.



The three remaining combinations of grad, div and curl are:

0%p 0%¢ 0d%¢

divgrad o = V-V =V%p = 7z T 3y o ..(13)

Grad diva = V(V -a)
_ azax+ 0%a, . d%a, iy azax+ 62ay+ 0%a,\

0x? 0xdy  0x0z dydx  dy? = 0ydz J

d%a, 0%a, 0%a
x+ 2% n z
0z0x  0zdy  0z?

>k IR ¢ 1)

curlcurla = Vx (Vxa)=V({V-a)-V?a...........(15)

The term V?2a has the linear differential operator V2 acting on a vector (as opposed to a scalar as
in (13)), which of course consists of a sum of unit vectors multiplied by components. Two cases

arise.

(i)  If the unit vectors are constants (i.e. they are independent of the values of the
coordinates) then the differential operator gives a non-zero contribution only when
acting upon the components, the unit vectors being merely multipliers.

v L 4y e Ranlsa (plany Jonlitl ale (i (Y o8 oo Al Ll (o) 208 50m ) lgate i< 13
lieliae 3 yae aa sl Cilgadtia (5558 dua (LS Gl e Jaall

(i) If the unit vectors vary as the values of the coordinates change (i.e. are not constant in
direction throughout the whole space) then the derivatives of these vectors appear as

contributions to VZa.

028 ClEiie Gl ¢(Aalisal) eladl mpen 3 oladY) 3 A5G Col el (6T) Clilan) o jaad e Bas 5l Clgaia &y 1)
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» Show that V-(VexVy)=0, where ¢ and  are scalar fields.
From the table(1) we have:
V-(axb)=b-(Vxa)—a-(Vxb).

If we let a = Vo and b = Vy then we obtain



V- (VoxVy)=Vy- (VxVe)-Ve-(VxVy)=0,
since VxVo =0=VxVy, from (7). <
3- Cylindrical polar coordinates:

As shown in figure (2), the position of a point in space P having Cartesian coordinates x,y,z may
be expressed in terms of cylindrical polar coordinates p, ¢,z, where:

X = pcosQ,y = PSINQY,Z = Z ..cce ev en .. (16)
andp =>0,0 < ¢ <2m, and — o < z < o .The position vector of P may therefore be written
r =pcospi+psinpgj+zk..........(17)

If we take the partial derivatives of r with respect to p, ¢ and z respectively then we obtain the
three vectors:

or
e, = % =cosQi+Singj... . .....(18)
or - .
ey = % =—psSingi+pcosQj..........(19)
or
€; = 5= k... ....[(20)

These vectors lie in the directions of increasing p, ¢ and z respectively but are not all of unit

length. it is usual to work with the corresponding unit vectors, which are obtained by dividing
each vector by its modulus to give:

A

€y = €, =CcosQ i+ 5sing j.........(21)
ép, = ;e(P = —Sin@ i+ cosQ j ... .. . ... ... (22)
é, = e, =k............(23)

These three unit vectors, like the Cartesian unit vectors i, j and k, form an orthonormal triad at
each point in space.

The expression for a general infinitesimal vector displacement dr in the position of P is given
by:

dr =dpe, +dpe, +dze,
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dr =dpé,+pdpé, +dz é,..........(24)

This expression illustrates an important difference between Cartesian and cylindrical polar
coordinates (or non-Cartesian coordinates in general). In Cartesian coordinates, the distance
moved in going from x to x + dx, with y and z held constant, is simply ds = dx. However, in
cylindrical polars, if ¢ changes by dg, with p and z held constant, then the distance moved is not
do, but ds = pdop.

figure (3): Cylindrical polar coordinates p,¢,z.

Factors, such as the p in pdp, that multiply the coordinate differentials to give distances are known
as scale factors. From (24), the scale factors for the p, ¢ and z coordinates are therefore 1, p and
1 respectively.

The magnitude ds of the displacement dr is given in cylindrical polar coordinates by:
(ds)? = dr - dr = (dp)? + p?(dp)? + (dz)?...............(25)

Where in the second equality we have used the fact that the basis vectors are orthonormal. We
can also find the volume element in a cylindrical polar system (see figure 4) by calculating the

volume of the infinitesimal parallelepiped defined by the vectors dpé,, pdpé, and dzé,:

dV = |dpe, - (pdeé, x dzé,)| = pdpdedz



x*

Figure (4): The element of volume in cylindrical polar coordinates is given by p dp dop dz.

The expressions for grad, div, curl and V2 can then be calculated and are given in table (3):

. 10, oo,

Vb = op e, + (’:?qbed’ + P

V.a — 16( )+16a¢+6az
B p@ppa’o p 0p 0z

Vxa = — _

p| dp 0¢ 0z
a, pag a
1 ¢ (patb) 1 0*d BRL())

2
o = -2 (,2Z et
v pop \" dp p* 02 * 0z2

Table (3): Vector operators in cylindrical polar coordinates; @ is a scalar field and a is a vector
field.

Let us consider a vector field a(p,p,z) and a scalar field ®(p,¢,z), where we use @ for the scalar
field to avoid confusion with the azimuthal angle ¢. We must first write the vector field in terms
of the basis vectors of the cylindrical polar coordinate system, i.e.

a=a,é,+pa,é, +a, é

where a,, a, and a, are the components of a in the p, ¢ and z directions respectively.

»Express the vector field a = yz i -y j+xz?k in cylindrical polar coordinates, and hence calculate
its divergence. Show that the same result is obtained by evaluating the divergence in Cartesian
coordinates.
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The basis vectors of the cylindrical polar coordinate system are given in (21)—(23). Solving these
equations simultaneously for i, j and k we obtain:

[ =cospé,—singé,
j = sing é, + cosg é,

k = ¢,

Substituting these relations and (13) into the expression for a we find:

a = ZpSiTl(p(COS(p é, —sing é(p) — psing (singo é, + cosp é(p) + z%p cosgp &,
= (z p sing cosp — p sin*@)é, — (z p sin® ¢ + p sing cosp)é,
+ z%p cosg é,.

Substituting into the expression for V - a given in table 2:
V-a = 2zsing cose — 2sin*@ — 2z sing cosp — cos’p + sin*@ + 2z p cose
= 2zpcosp — 1.
Alternatively, and much more quickly in this case, we can calculate the divergence directly in
Cartesian coordinates. We obtain

da, Jda, Jda,
a=—=+ 5 + = zZX

which on substituting x = p cose Yyields the same result as the calculation in cylindrical polars. <«

4- Spherical polar coordinates:
As shown in figure (4), the position of a point in space P, with Cartesian coordinates x,y,z, may
be expressed in terms of spherical polar coordinates r, 6, ¢,where:
x = rsinfcose, y = rsinfsing, Z =1cosO ... ... ... ...(26)
and r > 0, 0 < 0 < and 0<¢ <2x. The position vector of ~ may therefore be written as:

r =rsinf cospi+rsind sinpj+rcosfk..........(27)
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If, ina similar manner to that used in the previous section for cylindrical polars, we find the partial
derivatives of r with respect to r, 6 and ¢ respectively and divide each of the resulting vectors by
its modulus then we obtain the unit basis vectors:

é, = sinf cos@ i + sinf sing j + cosO k,
€g = cosO cos i + cosO sing j — sinf k,
€y, = —singp i+ cospj.

These unit vectors are in the directions of increasing », @ and ¢ respectively and are the
orthonormal basis set for spherical polar coordinates, as shown in figure (5).

z
7 edx

€a

Figure (5): Spherical polar coordinates r,6,¢.
A general infinitesimal vector displacement in spherical polars is:

dr = dré, +rdféy +rsinfde é,...........(28)

Thus the scale factors for the r, 8 and ¢ coordinates are 1, r and r sin6 respectively. The magnitude
ds of the displacement dr is given by:

(ds)? = dr - dr = (dr)? + r? (d6)? + r? sin? 0(de)?

since the basis vectors form an orthonormal set. The element of volume in spherical polar
coordinates (see figure 6) is the volume of the infinitesimal parallelepiped defined by the vectors
dr é,, rdf ég and r sin dp €, and is given by:

dV =|dré, - (rdfé, x rsinddeé,)| = risind drdf de

Where again we use the fact that the basis vectors are orthonormal. The expressions for (ds)? and
dV in spherical polars can be obtained from the geometry of this coordinate system.
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Figure (6): The element of volume in spherical polar coordinates is given by r2sin dr d6 dg.

We will now express the standard vector operators in spherical polar coordinates, using the same
techniques as for cylindrical polar coordinates. We consider a scalar field ®(r,6,¢) and a vector
field a(r,0,¢). The latter may be written in terms of the basis vectors of the spherical polar
coordinate system as:

a =a.é +ag ég + a, &y,

where a;, ag and a, are the components of a in the », 8 and ¢ directions respectively. The
expressions for grad, div, curl and V2 are given in table (4). The derivations of these results are
given in the next section.

vo - %, 100, 1 oo
T T T rsing ag ¢
&, 1 8 . 1 day
Vea = G50t S a0 Y i ag
é, réy f‘Sinf5'§¢
Vra - 1 g 8
~ rIsinf@ | ér 80 8o
a. rag rsinf ay
18 [ ,80 1 @ 8 1 80
Zd) — - 27" - inf - - =
v 2 ar (" Elr) t 7sin0 30 (Sm as) T int0 097

Table (4): Vector operators in spherical polar coordinates; @ is a scalar field and a is a vector
field.

We can rewrite the first term on the RHS as follows:

10 0o 1 0°
—_— 71— =
r2 or or r Or?

Which can often be useful in shortening calculations.
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